
ENGN 1750: Advanced Mechanics of Solids

Modeling beams in Abaqus

1 Introduction

In the first Abaqus assignment, we were introduced to building models in Abaqus in the
context of trusses, and we saw the basic ingredients of a static finite element simulation,
namely

1. Geometry,

2. Material behavior,

3. Loads and boundary conditions, and

4. Mesh.

These ingredients will continue to be integral to our subsequent exercises using Abaqus.
Trusses are the simplest of structural elements, only supporting constant axial forces (no

bending or twisting), and as such, the displacements along the length of the members are
linear. As we will see later in the course, finite elements assume the displacement field to
have some functional form. Truss elements assume linear displacements and therefore yield
exact solutions, which we observed in the first assignment.

In this assignment, we will examine another familiar structural element: Euler-Bernoulli
beams. Our objective is an introduction to the modeling of this important structural element
using finite elements in Abaqus. In contrast to truss members, which only carry force along
their length, beams are capable of carrying shear forces and bending moments. The governing
equation for the lateral displacement of a beam δ along its length x is

EI
d4δ

dx4
= q,

where q is a distributed load per unit length of the beam, E is the Young’s modulus, and I
is the second moment of area of the beam’s cross section

When q = 0, the governing equation is solved exactly when δ is a cubic polynomial in x.
Therefore, Abaqus Euler-Bernoulli beam elements assume that the lateral displacement field
δ is interpolated by a cubic spline, and the calculated displacements and stresses are exact.
Even in the case of a distributed load, Abaqus interprets the load in such a way that the
calculated displacements are exact (although the calculated stresses are no longer exact).

In this exercise, we will

1. Learn to set up a beam analysis in Abaqus.

2. Learn to apply midpoint and distributed loads.

3. Examine the effect of mesh resolution.

Reminder on units: Before we begin, let us recall that Abaqus has no built-in set of units.
Be sure that you input all numerical quantities with respect to a consistent set of units.
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2 In-class exercises

2.1 Cantilever beam

Consider the following cantilever beam, subjected to a load P at its midpoint as well as a
distributed load q:
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The beam has a length of L = 1m and a square cross-section with w = 0.05m and is made
of steel, so that E = 210GPa and ν = 0.3. A downward load of P = 10 kN is applied at the
midpoint, and a distributed load of q = 10 kN/m is applied along its length. The downward
displacement field due to the midpoint load is

δmid(x) =










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

Px2

12EI
(3L− 2x) 0 ≤ x < L/2,

PL2

48EI
(6x− L) L/2 ≤ x ≤ L,

and the downward displacement field due to the distributed load is

δdist(x) =
qx2

24EI
(6L2

− 4Lx+ x2),

so that, by superposition, the total downward displacement field is

δ(x) = δmid(x) + δdist(x) =








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Px2

12EI
(3L− 2x) +

qx2

24EI
(6L2

− 4Lx+ x2) 0 ≤ x < L/2,

PL2

48EI
(6x− L) +

qx2

24EI
(6L2

− 4Lx+ x2) L/2 ≤ x ≤ L,

and the tip displacement is

δtip = δ(x = L) =
5PL3

48EI
+

qL4

8EI
.

Below is an outline of the steps for performing the analysis in Abaqus/CAE:

• Part:

- Part ⇒ Create

- Select 2D Planar, Deformable, Wire, and Approximate size: 2 ⇒ Continue
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- Sketch the part as pictured and click Done

- In order to later apply the load at its midpoint, we need to partition the beam.
Select the Partition Edge: Select Midpoint/Datum Point button from the menu
on the left.

- Select the midpoint of the beam and click Create Partition.

• Property:

- Material ⇒ Create

- Mechanical ⇒ Elasticity ⇒ Elastic

- Enter the material properties for steel and click OK

- Profile ⇒ Create

- Rectangular ⇒ Continue

- Enter the cross-sectional dimensions and click OK

- Section ⇒ Create

- Beam ⇒ Beam ⇒ Continue

- Make sure your material and profile are selected and click OK

- Assign ⇒ Section

- Select the entire part and click Done/OK.

- Assign ⇒ Beam section orientation

- Select the entire part and click Done.

- Accept the default orientation (in 2D, it is your only option) and click OK

• Assembly:

- Instance ⇒ Create ⇒ OK

• Step:

- Step ⇒ Create ⇒ Static/General ⇒ Continue ⇒ OK

• Load:

- BC ⇒ Create ⇒ Mechanical ⇒ Displacement/Rotation ⇒ Continue ⇒ Select
left end and click Done ⇒ Enter U1=U2=UR3=0 and click OK

- Load ⇒ Create ⇒ Mechanical ⇒ Concentrated Force ⇒ Continue ⇒ Select mid-
point and click Done ⇒ Enter CF2 and click OK

- Load ⇒ Create ⇒ Mechanical ⇒ Line load ⇒ Select the whole beam (be sure
to select both sides of the partition) and click Done ⇒ Enter Component 2 and
click OK
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• Mesh:

- Make sure Object is set to Part.

- Mesh ⇒ Element Type ⇒ Select the entire part and click Done ⇒ Family: Beam
⇒ Select Beam type: Cubic formulation (This is the Euler-Bernoulli beam ele-
ment.) ⇒ Click OK

- Seed ⇒ Edges ⇒ Select the entire part and click Done ⇒ Method: By number
⇒ Number of elements: 1 ⇒ Click OK

- Mesh ⇒ Part ⇒ Yes

• Job:

- Job ⇒ Create ⇒ Continue/OK

- Job ⇒ Submit ⇒ Job-1

- When the job successfully completes: Job ⇒ Results ⇒ Job-1

• Visualization:

- Examine contour plots of displacement, stress and strain.

- Probe quantitative results at specific points of the model:
Tools ⇒ Query ⇒ Probe values

- Verify that the calculated tip displacement matches its analytical counterpart.

To calculate displacements along the length of the beam and to better resolve the stress,
we need to use more elements.

• Mesh:

- Seed ⇒ Edges ⇒ Select entire part and click Done ⇒ Method: By number ⇒

Number of elements: 10 ⇒ Click OK

- Mesh ⇒ Part ⇒ Yes.

• Job:

- Job ⇒ Submit ⇒ Job-1

- When the job successfully completes: Job ⇒ Results ⇒ Job-1

• Visualization:

- Probe displacements at different nodes and verify that they correspond to the
analytical expression.

- Examine the stress field field by probing stresses in the elements.
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2.2 Branched Beam

Next consider a beam with a more complex geometry, loaded as shown below:
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The beam is made of steel. Below is an outline of the steps for performing the analysis in
Abaqus/CAE:

• Part:

- Part ⇒ Create

- Select 2D Planar, Deformable, Wire, and Approximate size: 20 ⇒ Continue

- Sketch the part as pictured and click Done

• Property:

- Material ⇒ Create

- Mechanical ⇒ Elasticity ⇒ Elastic

- Enter the material properties for steel and click OK

- Profile ⇒ Create

- Rectangular ⇒ Continue

- Enter the cross-sectional dimensions and click OK

- Section ⇒ Create

- Beam ⇒ Beam ⇒ Continue

- Make sure your material and profile are selected and click OK

- Assign ⇒ Section

- Select the entire part and click Done/OK.

- Assign ⇒ Beam section orientation

- Select the entire part and click Done.

- Accept the default orientation (in 2D, it is your only option) and click OK
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• Assembly:

- Instance ⇒ Create ⇒ OK

• Step:

- Step ⇒ Create ⇒ Static/General ⇒ Continue ⇒ OK

• Load:

- BC ⇒ Create ⇒ Mechanical ⇒ Displacement/Rotation ⇒ Continue ⇒ Select
point E and click Done ⇒ Enter U1=U2=UR3=0 and click OK

- Load ⇒ Create ⇒ Mechanical ⇒ Concentrated Force ⇒ Continue ⇒ Select point
A and click Done ⇒ Enter CF2 and click OK

- Load ⇒ Create ⇒ Mechanical ⇒ Concentrated Force ⇒ Continue ⇒ Select point
D and click Done ⇒ Enter CF2 and click OK

• Mesh:

- Make sure Object is set to Part.

- Mesh ⇒ Element Type ⇒ Select the entire part and click Done ⇒ Family: Beam
⇒ Select Beam type: Cubic formulation ⇒ Click OK

- Seed ⇒ Edges ⇒ Select entire part and click Done ⇒ Method: By size ⇒ Ap-
proximate element size: 0.5m ⇒ Click OK

- Mesh ⇒ Part ⇒ Yes

• Job:

- Job ⇒ Create ⇒ Continue/OK

- Job ⇒ Submit ⇒ Job-1

- When the job successfully completes: Job ⇒ Results ⇒ Job-1

• Visualization:

- Examine contour plots of displacement, stress and strain.

- Probe quantitative results at specific points of the model:
Tools ⇒ Query ⇒ Probe values
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ENGN 1750: Advanced Mechanics of Solids

Abaqus Assignment 2

Due: Monday, October 13, 2014 OR Thursday, October 16, 2014 (in class)

1. Consider the plane frame consisting of four beams, pictured below.
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The beams have a length of L = 1m and a square cross-section with w = 5 cm. They
are made of steel, so that E = 210GPa and ν = 0.3. The joints between beams are
rigid, i.e., initial angles are assumed to be preserved after bending. Be sure to take
advantage of the symmetry of the problem in your modeling.

(a) Determine the stiffness of the frame loaded horizontally as shown in the figure
as a function of the angle θ. The load P and displacement δ may be non-
dimensionalized as PL2/EI and δ/L, respectively. The dimensionless stiffness
is then

k =
PL2/EI

δ/L
=

PL3

EIδ
.

Submit a plot of k versus θ for 15◦ ≤ θ ≤ 75◦, using at least seven discrete values
of θ.

(b) The maximum stress in your simulation is dependent on the number of elements.
For θ = 45◦, submit a plot of the maximum stress attained in your simulation
as a function of the number of elements N per beam for 1 ≤ N ≤ 20. Plot the
maximum stress in dimensionless form as σmaxw

3/PL.

(c) Choose a value of N , for which you are satisfied that the simulated maximum
stress is close enough to the actual value. Submit a plot of the maximum stress
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in the frame as a function of θ. Prepare your plot in dimensionless form, i.e.
σmaxw

3/PL versus θ.

2. Consider the curved beam in the form of a semicircular hoop show below:

xxx
xxx
xxx

R

!"#$$%$&'(#)*

+*

The curved beam has a radius of R = 1m and a square cross-section with w = 5 cm.
The beam is made of steel with E = 210GPa and ν = 0.3. We refer to the horizontal

displacement of the point A is denoted as δ. Again, we define a dimensionless stiffness
based on a non-dimensionalized load PR2/EI and displacement δ/R:

k =
PR2/EI

δ/R
=

PR3

EIδ
.

The calculated stiffness of the curved bar depends upon the number of elements used.
Submit a plot of the dimensionless stiffness k as a function of the number of elements
N in the curved beam for 2 ≤ N ≤ 16.
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