
1 INTRODUCTION

This work is concerned with the modeling of stress-
softening, also known as Mullins effect (Mullins 
1969), and the associated permanent set, or inelastic 
effects, which can be observed when a filled-
elastomer is subject to loading-unloading cycles 
(Mars and Fatemi, 2004a). Both effects can be ob-
served in Figure 1 where the typical uniaxial re-
sponse of a filled-elastomer is shown. After several 
cycles between zero stress and a fixed-strain-level 
have been applied to the specimen, it shows a stable 
stress-strain response accompanied by dissipation of 
energy through a hysteresis loop. Further softening 
and accumulation of permanent set occur when the 
specimen is strained to a higher strain level.

A model for the stress-softening effect has been 
available for several years (Bose et al 2003) in the 
commercial finite element software Abaqus. The 
model is based on the pseudo-elastic theory of 
Ogden and Roxburgh (1999). Mars (2004) used this 
model to simulate the combined effects of axial and 
torsional deformation on stress softening, ignoring 
the effects of permanent set. Dorfmann and Ogden 
(2004) formulated a pseudo-elastic strain energy 
function aimed at capturing both permanent set and 
stress-softening.  Their model depends not only on 

the deformation gradient, but also on two additional 
state variables.

Figure 1. Typical response of filled-elastomers under cyclic 
loading conditions

In our work, we use Mises plasticity with an as-
sociated flow rule to model permanent set in the 
context of finite strain elasticity using a multiplica-
tive decomposition (Lee 1969). In addition, stress-
softening effects, modeled through a modified 
Ogden-Roxburgh model (1999), are combined with 
the effects of permanent set.

The paper is organized as follows. First a brief 
description of the plasticity constitutive equations 
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based on multiplicative decomposition is provided. 
Next, a discussion on calibration of the model, and 
on splitting experimental data into plastic, hyperelas-
tic, and damage contributions is outlined. Then vali-
dation of the model in simple deformation modes is 
presented. Finally, the results of simulation of com-
bined axial and torsional loading of a rubber compo-
nent is compared with that of experimental data.

Standard notations are used throughout the paper. 
Boldface symbols are used to denote tensors, with 
their orders indicated by the context. If A and B are 
second-order tensors, then the following product is 
used in the text: kjikij BA )( BA .

2 FORMULATION

2.1 Multiplicative decomposition

In our formulation, both hyperelasticity and plastic-
ity are assumed to be isotropic. In addition, plasticity 
is assumed to be isochoric.  This assumption is con-
sistent with observations of volumetric constitutive 
behavior of filled rubber reported by Mars (2004). 
The isotropic work hardening function is a nonlinear 
function of a scalar state variable, namely, the 
equivalent plastic strain p .  The hardening function 
characterizes plastic dissipation in the material.

The starting point for our formulation is the 
multiplicative decomposition of the deformation 
gradient F  into elastic and plastic parts (Lee 1969):

 = e pF F F , (1)

where pF  is the fictitious intermediate configura-
tion. After some straight-forward algebra the rate 
form of plastic deformation gradient may be written 
for isotropic materials (Dafalias 1984) as:
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where the plastic part pD  of the deformation rate 
tensor is given by the associated flow rule
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of the von Mises yield condition

( ) 0y pq    . (4)

In the above   is the deviatoric part of the Kirchoff 
stress tensor  ; q  is the effective Kirchoff stress de-
fined as ττ :2

3q ; and y  is the nonlinear work 
hardening function, which depends on the equivalent 
plastic strain p .

The stress response is characterized through the 
hyperelastic strain energy potential W  and is written 
as:
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where 
Te e e C F F  is the right Cauchy-Green ten-

sor.

2.2 Mullins effect

As shown in Figure 1, filled-elastomers exhibit both 
permanent set and stress-softening when a specimen 
is subject to cyclic loading. The stress softening ef-
fect (i.e. Mullins effect) is included in our formula-
tion by incorporating a damage term in the strain en-
ergy potential in Equation 5 as follows:

( , )eW W  C (6)

where   is a scalar damage variable. Abaqus uses a 
modified Ogden-Roxburgh (1999) model to simulate 
stress-softening. The evolution of the scalar damage 
variable is written as
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In the above primaryW  is the deviatoric part of strain 
energy in the primary loading path, maxW  is the 
maximum value of primaryW  at the material point, 

,  r m  and   are material parameters, and erf () is the 
error function.

It should be mentioned that our model does not 
account for time and rate-effects, viscoelasticity or 
hysteresis effects.

2.3 Solution update

In the incremental development of nonlinear finite 
element solution, such as in Abaqus, the global equi-
librium equations are solved using Newton’s 
method. This implies that the state of the material 
must be updated at each integration point of the fi-
nite element mesh through an appropriate stress up-
date procedure, and the exact linearization modulus 
must be computed in order to achieve quadratic-
convergence of the global equilibrium equations.

The stress update procedure involves solving 
Equations 1-7 for a given total deformation F  and 
the state of the material  max, , ,e p p

t t t WF F  at the be-
ginning of the current increment. This system of 
equations is solved using standard techniques out-
lined in Weber and Anand (1990) and Simo (1992). 
The algorithm implemented in Abaqus is first-order 
accurate and unconditionally stable. As mentioned 
earlier, the exact linearization modulus is computed 
for the stress update procedure.

3 CALIBRATION

As discussed in the previous section, our formulation 
needs the following characterization of filled elas-
tomers, in order to carry out a finite element simula-
tion: a hyperelastic response, a representation of 



Mullins effect through a damage variable, and plas-
ticity to model permanent set. These characteriza-
tions correspond to three different keywords in the 
definition of a material in Abaqus, namely, 
*HYPERELASTIC, *MULLINS EFFECT and 
*PLASTIC. In order to extract this information from 
Figure 1 we proceed as follows.

First the data in Figure 1 is divided into three ta-
bles of data corresponding to primary loading curve 
(shown in dashed line), unloading / reloading data 
and permanent set data. We assume that for a small 
non-zero stress there is no permanent set, which cor-
responds to the initial yield stress.

The curve of stress versus permanent strain de-
fines the hardening function for the plasticity model. 
Using the table of permanent set data and the 1-d 
representation of the multiplicative decomposition, 

e p   , the primary loading response and the 
unloading response are computed in the unstressed 
intermediate configuration, which can be used di-
rectly as input to the program. Abaqus then auto-
matically fits the model parameters associated with 
any of the available strain energy functions, as well 
as the constants ,  r m  and   in the equation for the 
damage variable. The same calibration technique is 
applied to equibiaxial test data as well.

4 VALIDATION

Uniaxial test data for an EPDM compound is shown 
in dotted line (without markers) in Figure 2. After 
stretching the uniaxial specimen to 10% nominal 
strain, it was subject to 20 cycles between this strain 
and zero stress. Subsequently the strain levels were 
increased to 30% and 100% nominal strain. Clearly 
the material shows stress-softening while unloading, 
permanent set, and hysteretic dissipation of energy.

As described in the previous section, the plasticity 
hardening function was computed first. Then the 
primary loading response and the unloading response 
were computed in the intermediate configuration. 
Calibration of Mullins effect parameters was done 
using only the unloading data of the stable cycle. In 
our validation studies, the hyperelastic response was 
based on the first-invariant strain energy function of 
Marlow (2003), which is available in the finite ele-
ment software Abaqus. 

In the finite element simulation, a single element 
was subject to uniaxial loading to reach 10% nomi-
nal strain and then it was unloaded to zero stress 
level. Then the process was repeated for 30% and 
100% strain levels. The finite strain elasto-plasticity 
model captures all three phases, namely, loading, 
unloading and permanent set very well.

Since we have ignored time and rate effects, as 
described earlier, any reloading after unloading does 
not show hysteresis effects, thus the reloading and 
the unloading paths coincide.

Figure 2. Abaqus simulation (solid line with markers) against 
EPDM polymer test data (dashed line without markers)

5 COMBINED AXIAL TORSIONAL LOADING

5.1 Specimen and Material Properties

Mars (2004, 2004b) has analyzed a thin-walled axi-
symmetric specimen subject to combined axial and 
torsional loading. The multi-axial stress states 
achieved in this specimen are typical of those that 
arise in applications such as rolling tires. In his 
analysis, Mars (2004) considered Mullins effect, but 
neglected permanent set.  Here we show the results 
of simulation including permanent set.

Figure 3. Finite element mesh of the axisymmetric specimen

The finite element mesh is shown in Figure 3. We
have used the CGAX4H element of Abaqus for our 
simulations.  This element allows modeling of twist-
ing deformations that exhibit axisymmetry about the 
Y axis, and of incompressibility through a mixed-
displacement-pressure formulation. All the nodes at 



the bottom are constrained in the vertical direction, 
while they are free to twist and move radially as 
well. Axial displacement and rotation (twist) are ap-
plied at the top line of nodes.

Following Mars (2004), we use a 4th order re-
duced polynomial strain energy function to represent 
the hyperelastic response. The material properties for 
this model were calibrated based on pure axial and 
pure shear response of the aforementioned specimen 
and are listed in the following equation.
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Likewise the parameters in Equation 7 used to model 
Mullins effect are:

3,  56.282 MPa,  =0.1r m   (9)

Plasticity is characterized by a linear hardening func-
tion pyy H  0  with

0 29.6679 MPa, 8168.04 MPa.y H   (10)

5.2 Results

The results of finite element simulation with and 
without permanent set are compared with the ex-
perimental results for two different loading paths. In 
Figure 4, paths H and I are shown, which correspond 
to the out-of-phase axial and torsional loads. In both 
cases, displacement and rotation boundary condi-
tions are applied to the top lines of nodes for axial 
and torsion loading respectively.

Figure 4. Combined axial/torsional loading paths H and I

In the following figures, axial load is computed as 
the sum of the axial reaction forces in the top line of 
nodes. Similarly, torque is computed as the sum of 
the reaction moments about the vertical axis in the 
top line of nodes. The experimental data is shown by 
long dashed-lines with open markers, while finite 

element simulations with and without permanent set 
are shown by solid lines (labeled Fe.Fp) and short 
dashed-lines (labeled Fe) respectively.

Figure 5 shows axial load against axial displace-
ment for the final circular portion of Path H. The 
torsion response during the same test is shown in 
Figure 6.  In this loading path, axial and torsional ac-
tuations are 90° out of phase. The simulation results 
including permanent set show good agreement with 
the experiment.  In particular, both the elastic behav-
ior and the permanent set have been accurately ren-
dered, for both axial and torsion responses.  

Figure 5. Axial response for path H (combined axial/torsional 
loading 90° out of phase)

Figure 6. Torsional response for path H (combined ax-
ial/torsional loading 90° out of phase)

Figures 7 and 8 show, respectively, the axial and 
torsion responses for Path I. In this loading path, ax-
ial and torsional actuations are 180° out of phase. In 
this case, it can be clearly seen how including per-
manent set improves agreement between experiment 
and prediction.  Note particularly the axial response: 
without permanent set, a very soft behavior is pre-
dicted.  Prediction of the torsional response is also 
slightly improved. By including permanent set, both 
axial and torsional responses can be accurately mod-
eled.



Figure 7. Axial response for path I (combined axial/torsional 
loading 180° out of phase)

Figure 8. Torsional response for path I (combined ax-
ial/torsional loading 180°out of phase)

6 CONCLUSION

We have formulated a rate-independent theory that 
captures the effects of permanent set and stress sof-
tening for a class of filled elastomers. The model has 
been implemented in the commercial finite element 
software Abaqus. This theory is based on the princi-
ple of multiplicative decomposition of the deforma-
tion gradient and hence is valid for finite elastic 
strains. Our formulation avoids the oscillatory stress 
solution generated by finite elastic shear strains 
when the Jaumann rate is employed, as shown by 
Nagtegaal and de Jong (1982).

The constitutive model has been validated by 
comparing finite element results with experimental 
results in a simple deformation mode for an EPDM 
polymer. We were also able to obtain excellent 

agreement in results for a filled rubber component 
when subject to combined axial / torsional loading.

In summary, the ability to calibrate material pa-
rameters for filled elastomers, and the ability to 
model permanent set and Mullins effect is a power-
ful simulation tool. 
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