

© Dassault Systèmes, 2009 Page 1

Logical-Physical Modeling
Using Abaqus and Dymola

Abaqus/CAE Plug-in

Abaqus 6.9

© Dassault Systèmes, 2009 Page 2

Legal notices

CAUTION: This documentation is intended for qualified users who will exercise sound engineering judgment and expertise in the use of the Abaqus Software. The
Abaqus Software is inherently complex, and the examples and procedures in this documentation are not intended to be exhaustive or to apply to any particular
situation. Users are cautioned to satisfy themselves as to the accuracy and results of their analyses.

Dassault Systèmes and its subsidiaries, including Dassault Systèmes Simulia Corp., shall not be responsible for the accuracy or usefulness of any analysis performed
using the Abaqus Software or the procedures, examples, or explanations in this documentation. Dassault Systèmes and its subsidiaries shall not be responsible for the
consequences of any errors or omissions that may appear in this documentation.

DASSAULT SYSTÈMES AND ITS SUBSIDIARIES DISCLAIM ALL EXPRESS OR IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE CONTENTS OF THIS DOCUMENTATION.

IN NO EVENT SHALL DASSAULT SYSTÈMES, ITS SUBSIDIARIES, OR THEIR THIRD-PARTY PROVIDERS BE LIABLE FOR ANY INDIRECT,
INCIDENTAL, PUNITIVE, SPECIAL, OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF BUSINESS INFORMATION) EVEN IF DASSAULT SYSTÈMES OR ITS SUBSIDIARY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The Abaqus Software is available only under license from Dassault Systèmes or its subsidiary and may be used or reproduced only in accordance with the terms of
such license.

This documentation and the software described in this documentation are subject to change without prior notice.

This documentation may be reproduced and/or distributed without permission, as long as it is an exact reproduction, including these notices.

Export and re-export of the Abaqus Software and this documentation is subject to United States and other export control regulations. Each user is responsible
for compliance with applicable export regulations.

The Abaqus Software is a product of Dassault Systèmes Simulia Corp., Providence, RI, USA.

© Dassault Systèmes, 2009

U.S. GOVERNMENT USERS: The Abaqus Software and its documentation are “commercial items,” specifically “commercial computer software” and “commercial
computer software documentation” and, consistent with FAR 12.212 and DFARS 227.7202, as applicable, are provided with restricted rights in accordance with
license terms.

Abaqus, the 3DS logo, SIMULIA, Dymola, and Unified FEA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the United States
and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks,
copyrights, and licenses, see the Legal Notices in the Abaqus 6.9 Release Notes and the notices at: http://www.simulia.com/products/products_legal.html.

© Dassault Systèmes, 2009 Page 3

Version block

Version # Description of Version Date

1 Initial release 04 Jan 2010

© Dassault Systèmes, 2009 Page 4

1. Introduction

The Abaqus co-simulation technique can be used to analyze complex systems that include electronics, control
systems, electro-mechanics, hydraulics, and pneumatics by coupling Abaqus with Dymola, a general-purpose logical
modeling software distributed by Dynasim AB. Structural responses computed by Abaqus/Standard or
Abaqus/Explicit are coupled at run-time with logical solutions provided by Dymola. See SOSS Answer 3617 for
instructions on how to get Dymola and Abaqus ready for co-simulation and for general instructions on how to run
the co-simulation process between Abaqus and Dymola.

This guide is a reference for using the Abaqus/CAE plug-in to run co-simulation problems involving Abaqus and
Dymola, and provides detailed information on installation and usage. A tutorial with step-by-step instructions for
running a co-simulation analysis between Abaqus and Dymola is also included with the guide.

2. Installation and Setup

To install the plug-in, download and save the attached archive to one of the following directories:

• abaqus_dir\cae\abaqus_plugins where abaqus_dir is the Abaqus parent directory
• home_dir\abaqus_plugins where home_dir is your home directory
• current_dir\abaqus_plugins where current_dir is the current working directory

Note that if the abaqus_plugins directory does not exist in the desired path, it must be created. The plugin_dir
directory can also be used, where plugin_dir is a directory specified in the abaqus_v6.env file by the
environment variable plugin_central_dir. You can store plug-ins in a central location that can be accessed by all
users at your site if the directory to which plugin_central_dir refers is mounted on a file system that all users can
access. For example,

plugin_central_dir = r'\\fileServer\sharedDirectory'

On Windows platforms, right click on the archive file and select WinZip →Extract to here. A folder named
abq_dymola and a file named Dymola_plugin.py will be created. It is recommended that you have only one
release of this module at a time. Multiple versions may cause conflicts, and the first detected version in the Python
path will be used.

For more details on how you can use plug-ins and the Plug-in toolset to extend the capabilities of Abaqus/CAE
please refer to Part VIII: “Using plug-ins,” of the 6.9 Abaqus/CAE User’s Manual.

The complete path to the executable that launches Dymola, Dymola.exe, should be added to the environment
variable PATH. On Windows machines, a permanent setting can be employed by modifying the system or user
environment variable.

1. From the Control Panel → System icon, click on the Advanced tab and then click Environment
Variables.

2. Click New and enter PATH for the variable name and specify the path to the Dymola executable
(something like “D:\Dymola\bin”) for the variable value. If there is an existing PATH variable, edit the
variable and add the path to the executable to the variable value.

3. Click OK and OK.

© Dassault Systèmes, 2009 Page 5

Note that this is the executable that the plug-in will call for launching Dymola. It is recommended that the
Abaqus/CAE and Dymola files reside in the same directory and Abaqus/CAE is launched from this directory.

2.1 References

This section contains a list of reference material for co-simulation using Abaqus and Dymola. Documentation
references refer to Abaqus 6.9-1.

Abaqus

 SOSS Answer 3617
 “Co-simulation,” Section 14.1 of the Abaqus Analysis User’s Manual
 Abaqus Analysis User’s Manual
 Abaqus Keywords Reference Manual
 Abaqus Installation and Licensing Guide

Dymola
 Dymola User’s Manual

2.2 Whom to contact for assistance

You can contact your local Abaqus support office for technical assistance with Abaqus-Dymola problems.
Depending on the nature of your support needs, you may be referred to Dynasim AB for further assistance. For the
latest information on co-simulation using Abaqus and Dymola, see the SIMULIA Answers database in the
SIMULIA Online Support System. The SIMULIA Online Support System is accessible through the My Support
page at www.simulia.com. You can view answers related to logical modeling by selecting Abaqus/Standard
Analysis Techniques or Abaqus/Explicit Analysis Techniques from the list of Abaqus Topics, selecting the subtopic
Cosimulation, and clicking Search.

In case direct support is necessary, include the relevant model database (.cae) file, the accompanying replay (.rpy)
file, the Dymola logical (.mo) file and the details of the problem with your support request.

2.3 Typographical conventions

This guide adheres to a set of typographical conventions so that you can recognize actions and items. The following
list illustrates each of the conventions:

 Text you enter from the keyboard, or file names: abaqus, jobname.mo
 Hyperlinks: www.simulia.com
 Text indicating that you have a choice: job-name

© Dassault Systèmes, 2009 Page 6

3. Abaqus-Dymola Co-simulation: Using the Plug-in

3.1 Overview
Before using the plug-in, it is assumed that both Abaqus and Dymola are properly installed and ready for co-
simulation and that you are familiar with the Logical-Physical Modeling using Abaqus and Dymola User’s Guides
available via SOSS Answer 3617.

The plug-in provides a GUI-based link between the physical models created in Abaqus/CAE and the logical models
created in Dymola. A structural-logical analysis can be completed for a given Abaqus/CAE model database using
the plug-in. Before starting the plug-in, you need to do the following in Abaqus/CAE and Dymola:

1) Setup the physical model in Abaqus/CAE. This would involve creating, meshing and assembling the model
(or importing an orphan mesh), assigning material and section properties to the geometry, and assigning
interaction properties, loads and boundary conditions.

2) If possible, create the interface sensors and actuators that will be exchanged with Dymola. The plug-in also
provides the interface to create sensors and actuators interactively if this has not been done already.

3) Ensure that Dymola can be launched upon typing Dymola.exe on the command prompt and models can be
translated as a .DLL file from Dymola without any errors.

The plug-in is available under the Job module of Abaqus/CAE as illustrated in Figure 3-1. While the Job module is
active, select Plug-ins → Dymola for a number of options. Each of these options is discussed in detail below.

Figure 3-1: Abaqus/CAE plug-in for Abaqus-Dymola co-simulation

© Dassault Systèmes, 2009 Page 7

3.2 Co-simulation workflows

An Abaqus Dymola co-simulation analysis requires a physical model created in Abaqus/CAE and a Dymola logical
model. The plug-in provides the interface to create or identify sensors or actuators in Abaqus/CAE that can then be
written to a new Dymola logical (*.mo) file or can be matched with an existing logical file. Based on these two
scenarios, there are two different workflows available. A description of these workflows is provided below.

3.2.1 Workflow 1: Build a new Dymola logical model using signals (sensors and
actuators) from Abaqus/CAE

This workflow applies when you have built your physical model in Abaqus/CAE and subsequently want to create
the logical model using the sensors and actuators created in Abaqus/CAE. The workflow involves selecting the
sensors and actuators from the Abaqus/CAE model to be written to the Dymola logical (*.mo) file. These signals
are then written to the logical file and opened up in Dymola. You are then expected to build the logical model using
these sensors and actuators. Upon building the logical model, the model should be translated without errors and the
dynosim.dll file must be generated successfully. The plug-in can then be used to submit an Abaqus Dymola co-
simulation analysis. The workflow is illustrated in Figure 3-2:

Figure 3-2: Workflow1- Building a logical model from Abaqus/CAE signals

This workflow can be enabled by selecting Plugins → Dymola → Create New Dymola (*.mo) File ... menu as
shown in Figure 3-1. This dialog box is used to create a new Dymola logical (*.mo) file by providing the interface
to select Sensors and Actuators defined in the Abaqus/CAE model. Upon committing the dialog, the selected
Sensors and Actuators are written to a logical file and displayed in Dymola for you to build the logical model. The
dialog box (Figure 3-3) has two tabs - one for Sensors and the other for Actuators. The remaining dialog features
are listed below:

© Dassault Systèmes, 2009 Page 8

Figure 3-3: Create a New Dymola File dialog box

 Dymola model name: Specify the name of the Dymola logical (*.mo) file that will be written by the plug-in.

 Create Sensor: This button can be used to create a new Sensor History output in the displayed Abaqus/CAE
model. Clicking this button launches the Abaqus/CAE dialog to create History Outputs (Figure 3-4). Note that
Sensors can be created only when domain Set is selected and Include sensor when available is toggled on.

 Create Actuator: This button can be used to create a new Actuator amplitude in the displayed Abaqus/CAE
model. Clicking this button launches a dialog prompting for the Actuator name (Figure 3-4) for the amplitude
to be created.

 Available Signals: A list of all Sensors or Actuators defined in the displayed Abaqus/CAE model. From this
list, select the Sensor(s) or Actuators(s) that will need to written to the Dymola logical (*.mo) file. If no
Sensors or Actuators have been defined in the model, use the Create Sensor and Create Actuator buttons to
create them.

 Selected Signals: A list of Sensors and Actuators that will be written to the Dymola logical (*.mo) file.

Figure 3-4: Create History and Create Actuator Amplitude dialog boxes

© Dassault Systèmes, 2009 Page 9

Upon clicking OK, the following sequence of actions takes place:

1) The dialog box closes after error checks.
2) The Sensors and Actuators displayed in the Selected Signals list are written to the Dymola logical (*.mo)

file specified in the Dymola model name field. The file will be written to the directory from which
Abaqus/CAE is launched.

3) Dymola is launched (Figure 3-5) and the logical file written out by the plug-in will be displayed. The
Dymola model will have the same name as that of the Abaqus/CAE model.

Figure 3-5: Dymola Modeling window

You are expected to build the logical model using the sensors and actuators as shown in the highlighted area in
Figure 3-5. Once the model is complete, in Dymola switch to the Simulation tab (bottom right) and translate the
model by selecting Simulation → Translate (Figure 3-6) to generate the dymosim.dll file.

Figure 3-6: Dymola Translate

© Dassault Systèmes, 2009 Page 10

3.2.2 Workflow 2: Matching Abaqus/CAE Sensors and Actuators with an
existing logical model

This workflow applies when you have already built your logical models in Dymola and want to create the
corresponding Sensors and Actuators in the Abaqus/CAE physical model so that the two models are consistent. The
workflow involves importing and displaying the sensors and actuators from the Dymola logical (*.mo) file in the
plug-in dialog. You are then expected to create the missing sensors in the Abaqus/CAE model. The plug-in can
automatically create the missing actuators in the Abaqus/CAE model. Note that the signal names must be the same
in the logical and physical models. For the actuators to be meaningful they must be associated with an Abaqus
feature that can reference an amplitude definition such as a load or boundary condition. This can be accomplished
in Abaqus/CAE as usual.

Once the sensor and actuator names have been matched between the Abaqus/CAE and Dymola models, the plug-in
can then be used to submit an Abaqus-Dymola co-simulation analysis. The image provided below illustrates this
workflow:

Figure 3-7: Workflow 2 - Matching Abaqus/CAE signals with an existing Logical model

This workflow can be enabled by selecting Plugins → Dymola → Match Existing Dymola (*.mo) File. This
dialog box is meant to bring in an existing Dymola logical (*.mo) file and match the Sensors and Actuators in the
logical model with the ones in the Abaqus/CAE model. The dialog box (Figure 3-8) has two tabs: one for Sensors
and the other for Actuators.

© Dassault Systèmes, 2009 Page 11

Figure 3-8: Match Existing Dymola File dialog box

Note that the plug-in requires that the Sensor and Actuator names in the physical and logical models must match
exactly. Once the logical (*.mo) file is imported in the plug-in, an automatic check is done to see if the
Abaqus/CAE model has the Sensor and Actuator names matching with the names in the logical model. An
information dialog is then posted informing you if signal names are consistent between Abaqus/CAE and Dymola
models and if any Sensors or Actuators have to be created in the Abaqus/CAE model. You then have to create these
signals in the Abaqus/CAE model with the same name as that of the logical model. Anytime during this process,
you can check the consistency of the signals between the Abaqus/CAE and Dymola models. The dialog box, as
shown in Figure 3-8, has the following components:

 Dymola file name: Specify the name of the Dymola logical (*.mo) file that will be read into the plug-in in.

 Open file in Dymola: This button can be used to open the selected Dymola logical (*.mo) file in Dymola.

 Create Sensor: This button can be used to create a new Sensor History output in the displayed Abaqus/CAE
model. Clicking this button launches the Abaqus/CAE dialog to create History Outputs (Figure 3-4). Note that
Sensors can be created only when domain Set is selected and Include sensor when available is toggled on.

 Create Actuator: This button can be used to create new Actuator amplitude in the displayed Abaqus/CAE
model. Clicking this button launches a dialog prompting for the Actuator name (Figure 3-4) for the amplitude
to be created.

 Abaqus Signals: A list of all Sensor(s) or Actuator(s) defined in the displayed Abaqus/CAE model.

 Dymola Signals: A list of all Sensor(s) or Actuator(s) read in from the selected Dymola logical (*.mo) file.

 Check Signals: A button to check if the Sensor(s) and Actuator(s) read in from the Dymola logical (*.mo) file
has the equivalent Sensor(s) and Actuator(s) in the displayed Abaqus/CAE model. If they do not match, a
message dialog is posted with the list of Sensors and Actuators that have to be created in Abaqus/CAE.

© Dassault Systèmes, 2009 Page 12

3.3 Submitting an Abaqus-Dymola co-simulation

The dialog box can be accessed from the Plugins → Dymola → Submit Abaqus Dymola Co-simulation menu and
allows you to run Abaqus-Dymola co-simulation analyses. It has the following components as illustrated in Figure
3-9:

Figure 3-9: Submit Abaqus Dymola Co-simulation dialog box

 Abaqus job name: Specify the Abaqus job name to be used in the co-simulation analysis.

 Dymola file name: Select the Dymola logical (*.mo) file that will be used with Abaqus for co-simulation
analysis. Note that the dymosim.dll file in the Abaqus/CAE launch directory should have been generated for
the selected Dymola file.

 Co-simulation step: Select the co-simulation step from the Abaqus/CAE model.

 Time stepping scheme: This can have value of either VARIABLE or FIXED. Choose VARIABLE for
Abaqus to set the coupling step size equal to the next suggested increment size computed by the automatic time
incrementation scheme. Choose FIXED to specify a constant coupling step size.

 Step value: This field is applicable only if Time stepping scheme is set to FIXED. Specify the constant
coupling step size to be used for the co-simulation analysis.

 Enforcement Type: This can have value of either EXACT or LOOSE. Setting EXACT directs Abaqus to
reach the target times in an exact manner (TIME MARKS=YES); that is, Abaqus will adjust the time increment
as necessary to exactly meet the target time. Setting LOOSE directs Abaqus to meet the target times in an
approximate or loose manner (TIME MARKS=NO); performing a co-simulation exchange only after a target
time is passed, with time incrementation in Abaqus advancing without regard for the target time.

© Dassault Systèmes, 2009 Page 13

 Dymola solver: Select the Dymola solver type.

 Abaqus/Explicit precision: Set the precision for the Abaqus/Explicit analysis to Single or Double.

 Use multiple processors: Toggle this on to use multiple processors and select the number of processors.

 Write input, Data check and Full analysis: Select one of these options to write the Abaqus input file with co-
simulation keywords, to perform a data check on the Abaqus-Dymola co-simulation, or to run the Abaqus-
Dymola co-simulation analysis.

 Monitor: This button is valid for data check and full analyses and is activated when the job has been submitted.
Clicking this button opens a dialog box (Figure 3-10) that allows you to monitor the job. The Monitor dialog
posts the contents of the log (.log), status (.sta), data (.dat) and message (.msg) files of the Abaqus
analysis during the co-simulation. Click the Refresh button to upload the current file contents in the dialog.

 Submit: This button commits the dialog.

Figure 3-10: Co-simulation Job Monitor dialog box

© Dassault Systèmes, 2009 Page 14

4. Limitations and Additional Notes

The following limitations/comments apply:

 The plug-in is currently only available for the 32-bit Windows platform, and both analyses will run on the same

machine. You can write the Abaqus input and Dymola mapping files for the co-simulation using the plug-in
and run the analysis on remote platforms if necessary.

 The Dymola logical (*.mo) files and the Abaqus input files are written to the directory from which
Abaqus/CAE is launched. This is consistent with the general behavior of Abaqus/CAE.

 The names of the Sensors and Actuators should match exactly between the Abaqus/CAE model database and
the Dymola logical model, though the names are not case sensitive.

 The plug-in only matches the names of the signals between the two applications. It is your responsibility to
ensure that the Sensors have been requested at correct locations in the Abaqus/CAE model and that the input
Sensors and output Actuators have been used correctly in the Dymola model.

 You should remember to associate the Actuator amplitude with an appropriate option that can reference an
amplitude definition in the Abaqus/CAE model for actuation to be meaningful.

 When importing input files with Sensors and Actuators into Abaqus/CAE, you should check if they have been
imported correctly into the model and look into possible warning and error messages in the message log.

 When an Abaqus Dymola co-simulation analysis is run using the plug-in, the launch directory of Abaqus/CAE
will be searched for a dymosim.dll file. This should correspond to the Dymola logical (*.mo) file used for
setting up the job. If this file does not correspond to the selected Dymola file, results may be incorrect.

© Dassault Systèmes, 2009 Page 15

5. Tutorial: Balancing a Vertical Pole

This chapter contains a tutorial that demonstrates an Abaqus/Explicit-Dymola transient simulation. The problem
being modeled is rather simple, but illustrates all aspects of the co-simulation process: the vertical equilibrium of an
initially imbalanced pole is being sought (similar to what you would see in a clown act at a circus show).

This tutorial assumes working familiarity with Abaqus/CAE and Dymola. In it, you will learn how to use the plug-
in and:

 build a new Dymola logical model using signals from the Abaqus/CAE model
 match Sensors and Actuators between Abaqus/CAE and Dymola models
 set-up and execute an Abaqus-Dymola co-simulation

5.1 Overview

This tutorial requires Abaqus/CAE 6.9-1 or later and Dymola Version 7.2 or later.

5.1.1 Problem description

A stiff beam modeling the pole is initially placed in an unbalanced position under a gravity field. If no additional
forces are applied to the system, the pole will fall over. The goal is to find the corrective force that needs to be
applied at the bottom of the pole in the horizontal direction such that the pole becomes vertical. To make the
problem more challenging, two impact loads are applied at the top of the pole, at two distinct points in time, to
create further imbalance.

The difference in the top and bottom coordinates in the horizontal direction can be used as a measure of imbalance
of the pole: if the pole is in vertical balance the difference is very small (or zero) and only a small corrective force is
needed at the bottom of the pole; on the other hand, if the difference is large the imbalance is significant and a larger
force needs to be applied.

At a given time, the coordinates (sensors) are passed to Dymola, which computes the magnitude and sign of the
imbalance. Dymola then computes the force that must be applied in Abaqus (actuator) to balance the pole. The
process is repeated many times during the analysis.

5.1.2 Model description

The pole (and its dynamics) is modeled in Abaqus with a single beam element. For visualization purposes a display
body is added to represent the balancing point at the bottom (nose tip of a person) as shown in Figure 5-1:

© Dassault Systèmes, 2009 Page 16

Figure 5-1: Abaqus/CAE structural model

The Dymola control algorithm, shown in the center of Figure 5-2, is quite straightforward. A simple PID controller
will produce the desired results.

Figure 5-2: Dymola control model

5.1.3 Input files

The model input files for this tutorial are available in a compressed file attached to this SIMULIA Answer. Unzip
the files in your work directory. The files are as follows:

 inverted_pend_xpl.inp: Abaqus input file containing the model
 inverted_pend_head.inp: Abaqus input file containing a display body for the head model

© Dassault Systèmes, 2009 Page 17

 inverted_pend.mo: Dymola input file containing the control model
 inverted_pend.py: Python script to create the Abaqus/CAE model from the input files

5.2 Using the Abaqus/CAE plug-in for Abaqus Dymola Co-simulation

This section describes the step-by-step procedure for using the Abaqus/CAE plug-in for creating and setting-up an
Abaqus Dymola co-simulation with the tutorial files.

5.2.1 Creating the Abaqus/CAE model

First, create the Abaqus/CAE model that will be used as the structural model for the co-simulation.

 Unzip the tutorial files to a work directory. Start Abaqus/CAE from this work directory.
 Go to File → Run Script … and select the Python script inverted_pend.py. The Python script imports the

inverted_pend_xpl.inp input file into Abaqus/CAE, creates node sets and loads for co-simulation and
saves the model database to inverted_pend.cae. The material properties, step definitions and boundary
conditions have already been defined in the model.

 The CAE model inverted_pend_xpl has two parts; HEAD-1 and POLE-1. POLE-1 is the beam that will be
used for co-simulation and HEAD-1 is a display body.

5.2.2 Creating a New Dymola Logical (*.mo) file

Now, create sensors and actuators in the Abaqus/CAE model and write them to a Dymola logical file from the plug-
in.

 Go to the Job module of Abaqus/CAE
 Click Plug-ins → Dymola → Create New Dymola (*.mo) File… The Create New Dymola File dialog box

will be launched.
 The default name for Dymola models will be prefixed by LogicalJob. Rename this if necessary.
 Under Signal Options, go to the Sensors tab. Two sensors need to be created for the output variable

COOR1; one for each node of the beam. Click the Create Sensor button. The Create History dialog box
will be posted. Enter XNODETOP as the history output name and click Continue…. In the ensuing Edit
History Output Request dialog, choose Set as the Domain and select the set POLE-1.NODETOP from the
drop-down box. Choose Every n time increments for Frequency and enter a value of 1 for n. For the output
variables, select COOR1. This will be under COORD, Current nodal coordinates, which in turn, can be
found under Volume/Thickness/Coordinates. Toggle on Include sensor when available option to use this
history output request as a sensor. Click OK to create the sensor. The dialog box will be as shown in Figure
5-3. The created sensor will now be displayed under the Available Signals list of the plug-in dialog. Create
another sensor with the name XNODEBOT for the node set POLE-1.NODEBOT and output variable
COOR1.

 Add the two sensors that have been created to the Selected Signals list. This can be done by selecting both
the sensors and clicking on the >> button. The sensors will now be visible under the Selected Signals list and
will be written to the Dymola logical (*.mo) file.

 Next, go to the Actuators tab to create an actuator. Click Create Actuator. In the Create Actuator
Amplitude dialog, enter LOADNODEBOT as the actuator name and click OK. The actuator will now be
displayed under the Available Signals list. Select the actuator and move it to Selected Signals list using the
> or >> buttons.

The dialog box should look like the one shown in Figure 5-4:

© Dassault Systèmes, 2009 Page 18

Figure 5-3: Creating history output sensor

Figure 5-4: Create New Dymola File dialog

Once the signals to be written to the Dymola logical file have been selected for the Sensors and Actuators tabs,
click OK. This will write a Dymola logical (*.mo) file with the specified name to the work directory and also
launches Dymola to display the model as shown in Figure 5-5. Build the desired logical model in Dymola. Once
the model is complete, switch to the Simulation tab and translate the model by selecting Simulation → Translate

© Dassault Systèmes, 2009 Page 19

(Figure 5-5) to generate the dymosim.dll file. Review Section 6-1, Translating the Dymola Model in the
Appendix for more information on generating the DLL file. Save the Abaqus/CAE model.

Figure 5-5: Dymola logical model and Dymola Translation Window

5.2.3 Matching an Existing Dymola Logical (*.mo) file

In this section of the tutorial, an existing Dymola Logical (*.mo) file will be read into Abaqus/CAE using the plug-
in and the sensors and actuators will be matched between the Abaqus/CAE and Dymola models. The missing
signals will be created in the Abaqus/CAE model. The existing Dymola logical model file inverted_pend.mo,
will be used for this exercise.

 Switch to the inverted_pend_xpl model in Abaqus/CAE. Delete the actuator amplitude
LOADNODEBOT created earlier. This can be done directly from the model tree of Abaqus/CAE, or
switch to the Load module and go to Tools → Amplitude → Delete → LOADNODEBOT. Next, delete
the sensor history output XNODEBOT created earlier. This can be done directly from the model tree, or
switch to the Step module and go to Output → History Output Requests → Delete → XNODEBOT.
This can also be done by clicking on the History Output Request Manager icon on the toolbox area.
Finally, rename the other sensor history output XNODETOP to a different name (for example,
XNODETOP1). This can be done directly from the model tree, or from the Step module after selecting
Output → History Output Requests → Rename → XNODETOP.

 Next, switch to the Job module. Select Plug-ins → Dymola → Match Existing Dymola (*.mo)
File….The Match Existing Dymola File dialog box will be posted.

 Click on the Select button across Dymola file name field to bring an existing Dymola logical model file
into Abaqus/CAE. Clicking on the button will bring up a file selection dialog. Select the
inverted_pend.mo file and click OK. A dialog box as shown in Figure 5-6 will be posted.

 The dialog box states that the sensors XNODETOP and XNODEBOT and the actuator
LOADNODEBOT have to be created in the Abaqus/CAE model inverted_pend_xpl. Click OK for
creating the amplitude. It is not possible to automatically create the sensors in the Abaqus/CAE model as
there are unknowns like node set name, output variable and output frequency.

 Click the Open file in Dymola… button. This will launch Dymola and display the opened Dymola
Logical model file. Switch to the Simulation tab of Dymola and translate the model by selecting
Simulation → Translate to generate the dymosim.dll file. Review Section 6-1, Translating the

© Dassault Systèmes, 2009 Page 20

Dymola Model in the Appendix for more information on generating the DLL file. The sensor history
outputs have to be created in the Abaqus/CAE model to match with the Dymola sensors. As described in
Section 5.2.2, click the Create Sensor… button and create a sensor with the name XNODEBOT for the
node set POLE-1.NODEBOT and output variable COOR1. The sensor will now be displayed on the
Abaqus Signals list of the Sensors tab as shown in Figure 5-6. Next, click the Check Signals button at the
bottom of the dialog box. A dialog message stating that Dymola sensor XNODETOP

Figure 5-6: Match signals between Abaqus/CAE and Dymola

Figure 5-7: Warning dialog for Dymola Logical file

does not have a corresponding history output in Abaqus/CAE model will be displayed, as in Figure 5-7.
Click No. In the model tree of Abaqus/CAE, expand History Output Requests for the model
inverted_pend_xpl. Rename the previously changed sensor back to XNODETOP by selecting the history
output XNODETOP1 followed by right-click mouse button and choose Rename…. The name will be
updated in the Abaqus Signals list of Sensors tab.

© Dassault Systèmes, 2009 Page 21

 Once again, click Check Signals to see if the signal names are consistent between the Dymola and
Abaqus/CAE models. The signals should now be consistent. Click No on the info dialog and then click
Cancel to close the Match Existing Dymola File dialog box.

 Save the Abaqus/CAE model.

5.2.4 Submitting the Abaqus-Dymola co-simulation

In this section of the tutorial, an Abaqus-Dymola co-simulation will be defined and run from the plug-in.

 Before running the co-simulation, it is very important to define an actuator driven feature (like a load) in
the Abaqus/CAE model – otherwise, the actuator will not have any effect. A load that will use the
LOADNODEBOT actuator will be created in the Abaqus/CAE model. Switch to the Load module. Click
the Create Load icon from the toolbox area. Give an appropriate name for the load, select Mechanical for
Category and select Concentrated force under Types for Selected Step. Click Continue… to select the
points for the load. Click Sets… in the prompt area of the viewport. In the ensuing Region Selection
dialog box, select the POLE-1.NODEBOT node set (as shown in Figure 5-8) and click Continue…. In the
subsequent Edit Load dialog box, specify a value of -1 for CF1 and choose LOADNODEBOT for
Amplitude.

Figure 5-8 Node set selection for CLOAD

 Now, the Abaqus-Dymola co-simulation can be specified and run. Switch to the Job module. Go to Plug-
ins → Dymola → Submit Abaqus Dymola Co-simulation…. The Submit Abaqus Dymola Co-
simulation dialog box will be posted.

 Specify vertical_pole as the Abaqus job name. Click Select… and select inverted_pend.mo as the
Dymola file name. Choose Step-1 as the Co-simulation step.

 Under Co-simulation Controls, choose FIXED as Time Stepping Scheme, specify 0.003 for Step value,
choose EXACT for Enforcement type and choose Dassl for Dymola solver.

 Under Job Controls, choose Double for Abaqus/Explicit precision. Select the no. of multiple processors
if required.

 Under Job Execution, select Data check.

© Dassault Systèmes, 2009 Page 22

The models have now been set-up for co-simulation. Make sure that the Dymola model has been translated properly
and the dymosim.dll file exists in the work directory. The dialog box should look like the one in Figure 5-9.
Click Submit to run a data check on the co-simulation. Once the jobs start to execute, the Monitor button will be
activated. Click Monitor… to open the co-simulation job monitor dialog box. Click the Refresh button at the
bottom to update the job files. Look at the DAT and Status files for possible warning and error messages. Once the
data check is complete and successful, select Full analysis under Job Execution and re-submit the complete co-
simulation analysis. Monitor the Abaqus job files from the job monitor dialog. The co-simulation should take about
a minute to complete. Once the job completes successfully, open the output database in Abaqus/Viewer.

Figure 5-9: Submit Abaqus Dymola Co-simulation dialog box

5.3 Results
In Abaqus/Viewer open vertical_pole.odb. If you animate the deformed shape in Abaqus/Viewer, you will see
that the pole becomes vertical after which it tilts again since impact-like loads are applied at given times.

History outputs of the coordinates at the top and bottom nodes of the pole should appear as in Figure 5-10. The
coordinates are quite different to start with after which they become very similar at 0.314 sec. Because of the
impact load, they become different again only to become the same at about 0.68 seconds and so on.

The control force computed by Dymola is plotted in Figure 5-11.

As an exercise, reduce the fixed time increment size in the Submit Abaqus Dymola Co-simulation dialog box to
0.001 and re-run the co-simulation analysis. It is not necessary to translate the Dymola model again as it did not
change. Also, try using the Write input option and compare the keywords of the generated input file with the
inverted_pend_xpl.inp input file.

© Dassault Systèmes, 2009 Page 23

Figure 5-10: Top and bottom node coordinates (X-direction)

Figure 5-11: Control force computed by Dymola

© Dassault Systèmes, 2009 Page 24

6. APPENDIX

6.1 Translating the Dymola Model

From the bottom right of the Modeling panel in Dymola, click Simulation to switch to the Simulation panel.
Select Simulation → Setup and then click the Compiler tab. Toggle on Export model as DLL with API, and
click OK. From the Simulation panel, select Simulation → Translate. The current working directory should now
have a file called dymosim.dll that was created by the translation.

Figure 6-1: Translating the controller model

